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Abstract:

The building sector is central to global decarbonization efforts, accounting for a substantial share of
energy-related carbon dioxide emissions and representing one of the most cost-effective domains
for near-term mitigation. This article examines the critical role of the 2020s as a decisive decade for
aligning the global building sector with the International Energy Agency’s Net Zero Emissions by
2050 (NZE) Scenario, with a particular focus on achieving zero-carbon-ready performance for new
and retrofitted buildings by 2030. Drawing on recent policy developments and regulatory trends, the
analysis highlights the rapid expansion of building energy codes worldwide, the increasing adoption
of performance-based and stretch code frameworks, and their function as transitional mechanisms
toward more stringent net-zero standards. The study further explores the technological, financial,
and institutional barriers constraining progress, including high upfront investment costs, fragmented
regulatory environments, and skills shortages across the construction and retrofit value chain.
Emphasis is placed on the need for coordinated action among policymakers, industry stakeholders,
and end users to accelerate the deployment of clean and energy-efficient technologies, scale up
deep renovation rates, and integrate buildings into low-carbon, renewable-dominated energy
systems. The findings underscore that achieving net-zero-ready buildings delivers multiple co-
benefits beyond emissions reduction, including enhanced energy security, improved occupant
comfort, lower energy bills, and job creation. The article concludes that timely regulatory reform,
innovative financing models, workforce development, and consumer engagement are essential to
closing the implementation gap and ensuring the building sector’s alignment with long-term net-zero
targets.
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1. Introduction

The accelerated uptake and scaling of clean energy technologies in the building sector, alongside
structural and behavioural demand-side shifts such as improved thermostat set-points, reduced energy
wastage, and more efficient occupancy practices, can deliver substantial near-term emissions
abatement by 2030 [1-4]. When these measures are supported by coherent innovation strategies
(including targeted R&D, commercialization support, standards development, and market-shaping
policies), they not only reduce operational carbon dioxide (CO,) emissions but also help lock in long-
lived performance improvements across the building stock. Collectively, such interventions constitute a
pivotal enabler of the International Energy Agency’s Net Zero Emissions by 2050 (NZE) Scenario, which
requires a rapid transition toward a predominantly zero-carbon building stock through deep energy
retrofits, electrification of end uses, high-efficiency equipment, and integration of on-site renewables
and low-carbon district energy where feasible [5-8].

From an emissions-accounting perspective, buildings are a major driver of energy-related emissions
because their operational energy demand is met by a combination of direct fuel combustion (e.g., gas
or oil used for space and water heating) and indirect upstream emissions arising from electricity and
heat generation. Consequently, building operations, through both direct and indirect pathways are
responsible for approximately 30% of global energy-sector emissions. This magnitude underscores the
sector’'s centrality in global mitigation strategies: decarbonizing buildings requires simultaneously
improving energy efficiency (to reduce absolute demand), decarbonizing electricity supply (to lower the
carbon intensity of electrified services), and accelerating deployment of low-carbon end-use
technologies (such as high-performance envelopes, heat pumps, smart controls, efficient appliances,
and building-integrated renewables) [9-15].

Within the IEA Net Zero Emissions by 2050 (NZE) Scenario, a pivotal near-term milestone for
decarbonizing the global building sector is that all newly constructed buildings and all major retrofits
achieve “zero-carbon-ready” performance by 2030 [16-19]. Meeting this benchmark implies more than
incremental efficiency gains; it requires systematic compliance with rigorous criteria encompassing (i)
high energy-performance standards (e.g., advanced envelopes, efficient HVAC and appliances, and
smart controls), (i) the substitution of high-emission fuels with low- or zero-emission alternatives
(notably electrification and renewable-based heating solutions), (iii) transparent life cycle—based CO,
emissions reporting that accounts for both operational and embodied emissions, (iv) technical
compatibility with electricity systems characterized by high penetrations of variable renewable energy,
including demand flexibility, load shifting, and smart-grid interoperability, and (v) enhanced resilience
to evolving climate hazards, such as rising cooling demand, heat waves, and other extremes that can
undermine performance and occupant safety [20-25].

Despite the centrality of this target, progress from the 2020 baseline indicates a substantial
implementation gap: only about 5% of new building construction was assessed as zero-carbon-ready
at that time. Achieving 100% by 2030 therefore requires a broad policy and market transformation,
including the rapid strengthening and enforcement of building energy codes, mandatory minimum
energy performance standards, incentives and financing mechanisms that de-risk early adoption,
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workforce capacity building across the construction value chain, and supply-side scaling of high-
efficiency and low-carbon technologies and materials [26-28].

The retrofit dimension is even more constrained because of the inherent inertia of the existing
building stock. Buildings are long-lived assets, and turnover through demolition and replacement is
slow; consequently, roughly two-thirds of the floor area currently in use is expected to remain
operational in 2040. This persistence makes deep renovation indispensable to meeting sectoral
decarbonization goals. Accordingly, the NZE trajectory calls for retrofitting 20% of the existing building
stock to the zero-carbon-ready level by 2030, which in practical terms requires raising annual renovation
rates to at least 2% by 2030, compared with below 1% today [29-33]. Reaching these rates demands
not only expanded capital investment and accessible financing (including on-bill mechanisms, green
mortgages, and performance-based contracting), but also coordinated delivery models, such as
standardized retrofit packages, industrialized renovation approaches, and robust measurement,
reporting, and verification (MRV), to ensure that renovations translate into verifiable, durable emissions
reductions at scale.

This article contributes a consolidated, policy- and technology-oriented synthesis of the buildings
sector transition required under the IEA Net Zero Emissions by 2050 (NZE) Scenario, with particular
emphasis on the 2030 milestone of achieving zero-carbon-ready performance for all new construction
and major retrofits. It advances the literature by clarifying how regulatory architectures, especially the
evolution from prescriptive codes toward performance-based, hybrid, and stretch-code pathways,
function as practical transition instruments for scaling high-efficiency, low-carbon building practices,
while improving grid compatibility and climate resilience. In addition, the article identifies the principal
implementation bottlenecks, upfront capital costs, fragmented governance and compliance regimes,
and workforce capacity constraints, and frames them within an integrated delivery logic that links
financing innovation, code harmonization, supply-chain coordination, and user behaviour to accelerate
deep renovations and clean technology deployment. By explicitly connecting decarbonization outcomes
with co-benefits such as energy security, affordability, comfort, and employment, the study provides a
structured basis for policymakers and practitioners to design context-specific strategies that close the
gap between current progress and NZE-aligned trajectories.

2. Stretch Codes as a Transitional Mechanism for Accelerating Net-Zero-Ready Building
Standards

Drawing on the IEA’s most recent tracking assessment of building envelopes, approximately 80
countries have now adopted mandatory or voluntary building energy codes. Relative to the post-Paris
baseline (2015), this reflects an estimated 30% expansion in the number of jurisdictions implementing
such codes, suggesting that the Paris Agreement helped catalyze and accelerate earlier diffusion
trends. In parallel, building energy-efficiency measures and energy codes have emerged as one of the
most frequently referenced mitigation levers in countries’ Nationally Determined Contributions (NDCs),
underscoring the sector’s perceived cost-effectiveness and scalability in national decarbonization
strategies [34,35].

Against a rapidly evolving technology landscape, many governments have increasingly shifted from
general efficiency aspirations toward performance-oriented regulatory frameworks that explicitly aim to
reduce energy use intensity (EUI) and promote lower-carbon energy carriers (e.g., electrification and
cleaner district energy). Importantly, jurisdictions with existing energy codes are not only expanding
their scope (across building types and end uses) but also tightening technical requirements to
accommodate advanced construction practices, high-efficiency equipment, and digitalized design and
compliance workflows [36,37]. This “ratcheting” dynamic, periodic code updates that systematically
increase stringency, reflects a deliberate effort to move baseline construction practice closer to carbon
neutrality and, ultimately, zero-carbon-ready performance. Early institutional signals of this direction
include initiatives such as California’s 2022 Zero Code and the Massachusetts Energy Zero (E-Z) Code
in the United States, as well as multi-actor commitments including the C40 Net Zero Carbon Buildings
Declaration and the World Green Building Council’'s Net Zero Carbon Buildings Commitments. In federal
or multi-level governance systems, code adoption is frequently administered at state or provincial levels,
often through the adaptation of a national model code, which can improve coherence while preserving
local discretion [38-40].

From a regulatory-design standpoint, building energy codes are typically implemented through two
principal compliance architectures. The more common prescriptive approach specifies minimum
requirements on a component-by-component basis (e.g., insulation levels, window performance, HVAC
efficiencies). This approach is often favored by practitioners because it offers clear, verifiable
requirements and relatively straightforward enforcement pathways. However, strict prescriptive
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frameworks may constrain design optimization, as they limit the ability to make system-level trade-offs
(for example, compensating a higher glazing ratio with enhanced envelope insulation and airtightness).
To address this limitation, many jurisdictions are increasingly incorporating performance-based
compliance options, particularly for a widening set of building categories. Performance pathways
generally rely on whole-building energy modeling, establish an upper bound on energy consumption or
EUI, and permit more flexibility in how designers achieve compliance, thereby enabling market actors
to select the most context-appropriate efficiency package [41,42]. This flexibility, however, comes with
higher demands for technical capability, modeling competence, and quality assurance, because
performance outcomes depend on complex interactions among building subsystems and must be
demonstrated through software-based assessment.

In practice, “performance-based” regimes rarely eliminate prescriptive safeguards altogether. Many
retain mandatory minimum provisions to secure baseline performance for critical components and to
reduce risks associated with health, moisture management, and long-term durability. In addition, hybrid
frameworks are increasingly used: these may allow trade-offs within a defined subsystem (e.g., the
building envelope) or provide designers with structured choices through libraries of pre-simulated
reference buildings housed in specialized databases. As jurisdictions broaden performance pathways,
the regulatory value proposition increases further when additional metrics, especially CO, emissions,
are incorporated into compliance, enabling codes to align more directly with zero-carbon-ready
trajectories rather than energy-only benchmarks [43-45].

A further institutional innovation is the growing adoption of “stretch” codes, alternative compliance
pathways or supplemental codes that are intentionally more stringent than the base code. Stretch codes
may be supported through utility incentives, adopted voluntarily by local jurisdictions, or designed
explicitly as a transitional mechanism that is expected to become mandatory overtime. lllustrative
examples include the Massachusetts Stretch Code, which establishes advanced requirements that
municipalities may opt into, and the British Columbia Step Code, which structures compliance as a
sequence of incremental performance tiers intended to culminate in net-zero-energy readiness by 2032
[46-48]. The stretch-code model offers several strategic advantages: it enhances regulatory
predictability, provides industry with clearer forward signals, enables controlled experimentation with
new provisions, and creates space for technical assistance (e.g., compliance tools and workforce
training) before more stringent requirements are embedded in law. It also allows sub-jurisdictions to
adopt more ambitious standards than their parent jurisdiction when justified by local market readiness,
climatic conditions, or political priorities, thereby functioning as a policy laboratory for broader code
evolution.

3. Conclusion

The present decade constitutes a decisive window for achieving the intermediate milestones
required to transform the buildings sector in line with net-zero objectives by 2050. Yet, most of the
technologies, deployment rates, and enabling approaches necessary to deliver zero-carbon-ready
buildings remain misaligned with the trajectory implied by the IEA Net Zero Emissions by 2050 (NZE)
Scenario, indicating a persistent implementation gap between ambition and realized progress. In
addition, the urgency is acute. Rapid deployment of all currently available clean and high-efficiency
building technologies throughout the 2020s must occur in parallel with strategic preparation for the next
wave of innovations required to meet longer-term decarbonization imperatives. This acceleration must
be pursued while also advancing co-benefits that are increasingly central to policy legitimacy and
societal uptake: strengthening energy security, improving indoor comfort and health outcomes, lowering
household and commercial energy expenditures, and supporting employment creation across
construction, manufacturing, and services. The recent energy crisis, characterized by elevated and
volatile energy prices and heightened geopolitical concerns surrounding supply security, has further
amplified the strategic rationale for expediting the clean-energy transition in buildings, not merely as a
climate necessity but as a resilience and affordability imperative.

Delivering this transition requires coordinated, system-level collaboration across the buildings value
chain and its associated supply networks. Technology innovators, manufacturers, contractors, builders,
architects, engineers, urban planners, regulators, and researchers must align design standards, product
availability, workforce capabilities, and regulatory requirements, supported by policy frameworks that
de-risk investment and accelerate adoption. When synchronized effectively, such collaboration can
generate regionally tailored solutions that reduce fossil-fuel dependence across the full building life
cycle, from material production and construction to operation, renovation, and end-of-life, while enabling
scalable, cost-effective renovation pathways. In addition, end users can exert meaningful short-term
influence on demand reduction through behavioral and operational measures, including adjustments to
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thermostat set points and energy-use practices in residential and commercial buildings, which can yield
immediate reductions in energy consumption and peak loads.

A core constraint on achieving 2030-aligned milestones is the upfront capital cost of clean and
efficient technologies, particularly when compared with incumbent fossil-based systems or lower-
efficiency alternatives that may appear cheaper at the point of purchase. Addressing this barrier
requires the rapid maturation of financial and business models that lower initial costs and improve
affordability, such as targeted subsidies, concessional finance, preferential tariff structures, tax
incentives, and other market-shaping instruments that accelerate deployment while reducing payback
horizons. Moreover, Regulatory modernization is equally essential. Building codes, minimum energy
performance standards, and compliance mechanisms must be strengthened and updated, with greater
cross-country harmonization where feasible to reduce fragmentation and improve enforcement.
Streamlined and standardized implementation practices can reduce transaction costs and enhance
compliance at scale. Finally, the transition is constrained by a workforce bottleneck: expanding
education and vocational training for the installation, commissioning, and maintenance of clean, efficient
building technologies is critical to ensuring quality delivery, avoiding performance gaps, and sustaining
market growth.
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